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o Bats have achieved remarkable evolutionary success and are
known for their echolocation ability.

« Horseshoe bats (rhinolophids) are among bat species that
dynamically deform their reception baftles (pinnae) and
emission baftles (noseleaves) during signal reception and
emiss1on.

« Many bat species live in densely vegetated habitats and
hence routinely navigate in narrow gaps between foliage
where most of their biosonar returns are clutter echoes from
foliage. Nevertheless, they can find their way by relying on
sonar as their principal mode for sensing the environment.
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o Bat species navigating dense vegetation based on biosonar
have to obtain the necessary sensory information from “clut-
ter echoes’, i.e., echoes that are superpositions of contribu-
tions from many reflecting facets (e.g., leaves) and hence
have highly unpredictable waveforms.

o Prior results have suggested that pinna motions could aid in
direction-finding tasks based on deterministic echo patterns.

o This raises the question whether varying pinna shapes could
also have a function significance for challenging biosonar
tasks performed on clutter echoes.

o As a first, task-independent step to test this hypothesis it
has been investigated whether different pinna shapes have a
consistent effect on clutter echoes despite the random nature
of these signals.
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Experimental Setup
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A three-actuator dynamic bat-pinna model was developed (a). From this,

ten discrete static deformations were selected to model pinna motions a
bat might make in a natural environment. Subfigures (b), (¢), (d), and (e)

represent subsets of the shape conformations of (a).
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Each receiver was characterized with its respective beampattern at differ-
ent frequencies. Shown are the characterizations of three discrete pinna
shapes that cover the entire motion profile of the pinna.
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Custom data collection setup used for the research (a) and control
scheme for the experiments (b). Between each echo reception, fans were
operated to ensure that the artificial foliage different from echo to echo.
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Data Analysis
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Example of the echo recordings obtained: (a) full recording including
the direct pass-through of the transmit signal (3 ms linear chirp from

100kHz to 20kHz, with a Hanning envelope) trailed by the clutter echoes.

In subfigure (b) clutter echoes (approximately 4ms duration) segment-

ed from the recording. The clutter-echo segment was used as input to the

deep-learing classifier for the pinna shape conformation.

Correlation Matrix

Correlation structure of the echo data collected: (a) clutter echo samples
collected without operation of the fans used to agitate the foliage, leading
to a strong correlation in the dataset with an average correlation coefh-
cient of 0.79. (b) fans activated to agitate the foliage between each echo
recording, leading to a significant decrease in correlation to an average
correlation coefhicient of 0.22. This shows that running the fans and ag-
itating the foliage successfully decorrelates any two consecutive echoes,
ensuring that the inputs to the convolutional neural network have little
structural similarity.
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Results & Discussion
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The deep learning network architecture (convolutional neural network)
used to identify the pinna shape given the the spectrograms a single clut-
ter echo.
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Predicted Values

Using the full 4 ms clutter echo, the confusion matrix shows a close to
90% accuracy on a validation set in classifying the varying pinna shapes.

80

68.55 69.35

/0 64.68 . 0b.87

56.59

)]
o

3.15

Validation Accuracy (%)
N w H ul
o o o o

=
o

o

7.5ms — 8MmMs—9ms 8.5ms-— 9.0ms — 9.5ms — 10ms — 10.5ms — 11ms—
8.5ms 9.5ms 10ms 10.5ms 11ms 11.5ms 12ms

Time Window (ms)

Effect of windowing the clutter echo, a 1 ms sliding window with 0.5 ms
overlap was applied to the 4 ms clutter-echo segment. The eftect of the
time window location on the validation accuracy is shown.

Conclusion

The results show that despite the random nature of clutter echoes, even a
small pinna deformation can have a consistent and predictable effect on
the received clutter echo. The consistent nature of these eftects is a neces-
sary condition for potential applications of the pinna dynamics to sens-
ing tasks involving clutter echoes.
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